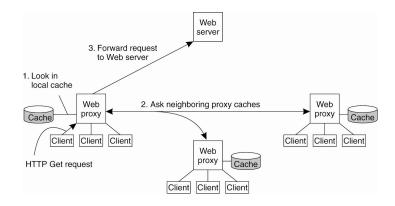

Web Caching


- Example of the web to illustrate caching and replication issues
 - Simpler model: clients are read-only, only server updates data

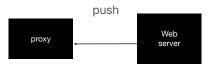
University of Massachusetts Amherst

Lec. 21 1

Web Proxy Caching

• The principle of cooperative caching.

Consistency Issues

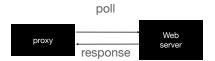

- Web pages tend to be updated over time
 - Some objects are static, others are dynamic
 - Different update frequencies (few minutes to few weeks)
- · How can a proxy cache maintain consistency of cached data?
 - Send invalidate or update
 - Push versus pull

Lec. 21 3

Push-based Approach

- Server tracks all proxies that have requested objects
- If a web page is modified, notify each proxy
- Notification types
 - Indicate object has changed [invalidate]
 - Send new version of object [update]
- · How to decide between invalidate and updates?
 - Pros and cons?

- One approach: send updates for more frequent objects, invalidate for rest


Push-based Approaches

- Advantages
 - Provide tight consistency [minimal stale data]
 - Proxies can be passive
- Disadvantages
 - Need to maintain state at the server
 - Recall that HTTP is stateless
 - Need mechanisms beyond HTTP
 - State may need to be maintained indefinitely
 - Not resilient to server crashes

Lec. 21 5

Pull-based Approaches

- · Proxy is entirely responsible for maintaining consistency
- · Proxy periodically polls the server to see if object has changed
 - Use if-modified-since HTTP messages
- · Key question: when should a proxy poll?
 - Server-assigned Time-to-Live (TTL) values
 - No guarantee if the object will change in the interim

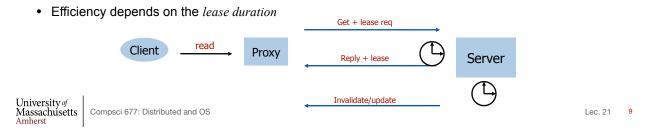
Pull-based Approach: Intelligent Polling

- Proxy can dynamically determine the refresh interval
 - Compute based on past observations
 - Start with a conservative refresh interval
 - Increase interval if object has not changed between two successive polls
 - Decrease interval if object is updated between two polls
 - Adaptive: No prior knowledge of object characteristics needed

Lec. 21 7

Pull-based Approach

- Advantages
 - Implementation using HTTP (If-modified-Since)
 - Server remains stateless
 - Resilient to both server and proxy failures


Disadvantages

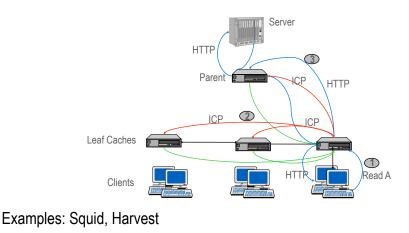
- Weaker consistency guarantees (objects can change between two polls and proxy will contain stale data until next poll)
 - Strong consistency only if poll before every HTTP response
- More sophisticated proxies required
- High message overhead

A Hybrid Approach: Leases

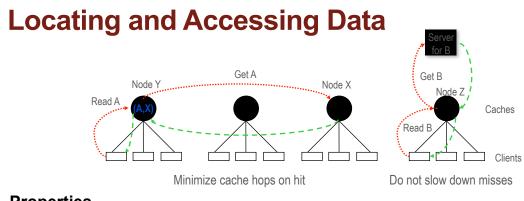
- · Lease: duration of time for which server agrees to notify proxy of modification
- · Issue lease on first request, send notification until expiry
 - Need to renew lease upon expiry
- · Smooth tradeoff between state and messages exchanged
 - Zero duration => polling, Infinite leases => server-push

Policies for Leases Duration

- · Age-based lease
 - Based on bi-modal nature of object lifetimes
 - Larger the expected lifetime longer the lease
- Renewal-frequency based
 - Based on skewed popularity
 - Proxy at which objects is popular gets longer lease
- Server load based
 - Based on adaptively controlling the state space
 - Shorter leases during heavy load


Cooperative Caching

- Caching infrastructure can have multiple web proxies
 - Proxies can be arranged in a hierarchy or other structures
 - Overlay network of proxies: content distribution network
 - Proxies can cooperate with one another
 - Answer client requests
 - Propagate server notifications



Lec. 21 11

Hierarchical Proxy Caching

Properties

- · Lookup is local
- · Hit at most 2 hops
- Miss at most 2 hops (1 extra on wrong hint)

Lec. 22 13

Edge Computing

- · Web caches effective when deployed close to clients
 - At the "Edge" of the network
- · Edge Computing: paradigm where applications run on servers located at the edge of the network
- Benefits
 - · Significantly lower latency than "remote" cloud servers
 - Higher bandwidth
 - · Can tolerate network or cloud failures
- Complements cloud computing
 - Cloud providers offer edge servers as well as cloud servers

Edge Computing Origins

- · Origins come from mobile computing and web caching
- Content delivery networks
 - · Network of edge caches deployed as commercial service
 - · Cache web content (especially rich content: images, video)
 - · Deliver from closest edge proxy server
- · Mobile computing
 - · devices has limited resources, limited battery power
 - · computational offload: offload work to more capable edge server
 - · low latency offload important for interactive mobile applications
 - · edge server sends results to the mobile

Compsci 677: Distributed and OS

University of Massachusetts Amherst

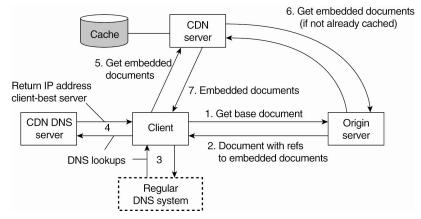
Lec. 21 15

Content Delivery Networks

- · Global network of edge proxies to deliver web content
 - edge clusters of varying sizes deployed in all parts of the world
 - Akamai CDN: 120K servers in 1100 networks, 80 countries
- · Content providers are customers of CDN service
 - Examples: news sites, image-rich online stores, streaming sites
 - · Decide what content to cache/offload to CDN
 - Embed links to cdn content: http://cdn.com/company/foo.mp4
 - · Consistency responsibility of content providers
- · Users access website normally
 - · Some content fetched by browser from CDN cache

CDN Request Routing

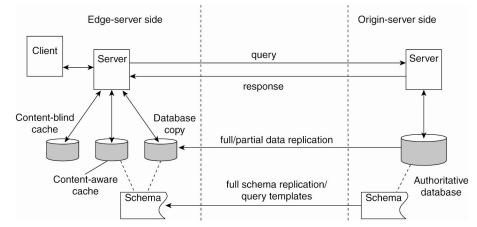
- · Web request need to be directed to nearby CDN server
- Two level load balancing
 - · Global: decide which cluster to use to serve request
 - · Local: decide which server in the cluster to use
- DNS-based approach is common
 - Special DNS server: resolve <u>www.cnn.com/newsvideo.mp4</u>
 - · DNS checks location of client and resolves to IP address of nearby CDN server
 - Different users will get resolved to different edge locations


Lec. 21 17

CDN Issues

- Which proxy answers a client request?
 - Ideally the "closest" proxy
 - Akamai uses a DNS-based approach
- · Propagating notifications
 - Can use multicast or application level multicast to reduce overheads (in push-based approaches)
- · Active area of research
 - Numerous research papers available

CDN Request Processing



• The principal working of the Akamai CDN.

University of Massachusetts Amherst

Lec. 21 19

CDN Hosting of Web Applications

• Figure 12-21. Alternatives for caching and replication with Web applications.

Mobile Edge Computing

- · Use case: Mobile offload of compute-intensive tasks
- Example: augmented reality, virtual reality (mobile AR/VR)
 - · mobile phone or headset has limited resources, limited battery
 - · Low latency / response times for interactive use experience
 - · mobile devices may lack a GPU or mobile GPU may be limited
- Today's smartphones are highly capable (multiple cores, mobile GPU, neural processor)
- mobile offload more suitable for less capable devices (e.g., AR headset)
- 5G cellular providers: deploy edge servers near cell towers
- industrial automation, autonomous vehicles

Lec. 21 21

Edge Computing Today

- · Emerging approach for latency-sensitive applications
- · Edge AI: run AI (deep learning) inference at edge
 - home security camera sends feed, run object detection
- Low latency offload: autonomous vehicles, smart city sensors, smart home etc.
- Edge computing as an extension to cloud
 - · Cloud regions augmented by local regions
 - Local regions are edge clusters that offer normal cloud service (but at lower latency) E.g., AWS Boston region
 - Internet of Things (IoT) data processing sevices

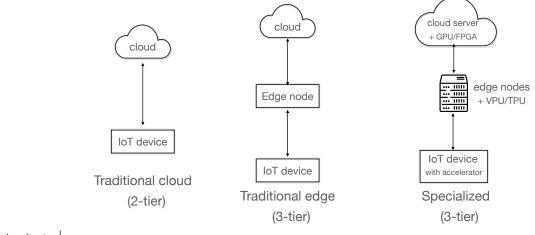
Specialized Edge Computing

- Edge accelerators: special hardware to accelerate edge tasks on resource constrained edge servers
 - Nvidia Jetson GPU, Google edge Tensor processing Unit (TUP), Intel Vision Processing Unit (VPU)
- · Example: IoT ML inference on edge accelerators
 - · Efficient inference on resource-constrained edge servers

Google Edge TPU

Nvidia Jetson Nano GPU

СА11 астис


Apple Neural Engine

University of Massachusetts Amherst

Compsci 677: Distributed and Operating Systems

Cloud and Edge Architectures

• Offload to cloud, edge, specialized edge,

Lec. 22 24

Lec. 22

23